Algoritmo

(Ginredirect tikang ha Algorithm)

Ha matematika, pagihap, lingwistika, an algoritmo amo an surundan nga naghahatag hin solusyon ha usa ka problema nga agsob gamiton ha pagkalkula ngan pag proseso hin mga datos.

Pinanbasaran

igliwat

Mga reperensya

igliwat
  • Axt, P. (1959) On a Subrecursive Hierarchy and Primitive Recursive Degrees, Transactions of the American Mathematical Society 92, pp. 85–105
  • Bell, C. Gordon and Newell, Allen (1971), Computer Structures: Readings and Examples, McGraw-Hill Book Company, New York. ISBN 0-07-004357-4.
  • Bellah, Robert Neelly (1985). Habits of the Heart: Individualism and Commitment in American Life. Berkeley: University of California Press. ISBN 978-0-520-25419-0. http://books.google.com/books?id=XsUojihVZQcC. 
  • Blass, Andreas; Gurevich, Yuri (2003). "Algorithms: A Quest for Absolute Definitions" (PDF). Bulletin of European Association for Theoretical Computer Science. 81. Includes an excellent bibliography of 56 references.
  • Boolos, George; Jeffrey, Richard (1999) [1974]. Computability and Logic (4th ed.). Cambridge University Press, London. ISBN 0-521-20402-X. : cf. Chapter 3 Turing machines where they discuss "certain enumerable sets not effectively (mechanically) enumerable".
  • Burgin, Mark (2004). Super-Recursive Algorithms. Springer. ISBN 978-0-387-95569-8. 
  • Campagnolo, M.L., Moore, C., and Costa, J.F. (2000) An analog characterization of the subrecursive functions. In Proc. of the 4th Conference on Real Numbers and Computers, Odense University, pp. 91–109
  • Church, Alonzo (1936a). "An Unsolvable Problem of Elementary Number Theory". The American Journal of Mathematics. 58 (2): 345–363. doi:10.2307/2371045. JSTOR 2371045. Reprinted in The Undecidable, p. 89ff. The first expression of "Church's Thesis". See in particular page 100 (The Undecidable) where he defines the notion of "effective calculability" in terms of "an algorithm", and he uses the word "terminates", etc.
  • Church, Alonzo (1936b). "A Note on the Entscheidungsproblem". The Journal of Symbolic Logic. 1 (1): 40–41. doi:10.2307/2269326. JSTOR 2269326. Church, Alonzo (1936). "Correction to a Note on the Entscheidungsproblem". The Journal of Symbolic Logic. 1 (3): 101–102. doi:10.2307/2269030. JSTOR 2269030. Reprinted in The Undecidable, p. 110ff. Church shows that the Entscheidungsproblem is unsolvable in about 3 pages of text and 3 pages of footnotes.
  • Daffa', Ali Abdullah al- (1977). The Muslim contribution to mathematics. London: Croom Helm. ISBN 0-85664-464-1. 
  • Davis, Martin (1965). The Undecidable: Basic Papers On Undecidable Propositions, Unsolvable Problems and Computable Functions. New York: Raven Press. ISBN 0-486-43228-9. https://archive.org/details/undecidablebasic0000davi.  Davis gives commentary before each article. Papers of Gödel, Alonzo Church, Turing, Rosser, Kleene, and Emil Post are included; those cited in the article are listed here by author's name.
  • Davis, Martin (2000). Engines of Logic: Mathematicians and the Origin of the Computer. New York: W. W. Nortion. ISBN 0-393-32229-7.  Davis offers concise biographies of Leibniz, Boole, Frege, Cantor, Hilbert, Gödel and Turing with von Neumann as the show-stealing villain. Very brief bios of Joseph-Marie Jacquard, Babbage, Ada Lovelace, Claude Shannon, Howard Aiken, etc.
  • Batakan:DADS
  • Dean, Tim (2012). "Evolution and moral diversity". Baltic International Yearbook of Cognition, Logic and Communication. 7.
  • Dennett, Daniel (1995). Darwin's Dangerous Idea. New York: Touchstone/Simon & Schuster. ISBN 0-684-80290-2. https://archive.org/details/darwinsdangerous0000denn_c9g4. 
  • Yuri Gurevich, Sequential Abstract State Machines Capture Sequential Algorithms, ACM Transactions on Computational Logic, Vol 1, no 1 (July 2000), pages 77–111. Includes bibliography of 33 sources.
  • Hertzke, Allen D.; McRorie, Chris (1998). "The Concept of Moral Ecology". In Lawler, Peter Augustine; McConkey, Dale. Community and Political Thought Today. Westort, CT: Praeger. 
  • Kleene, Stephen C. (1936). "General Recursive Functions of Natural Numbers". Mathematische Annalen. 112 (5): 727–742. doi:10.1007/BF01565439. Ginhipos tikang han orihinal han 2014-09-03. Ginkuhà 2015-01-30. Presented to the American Mathematical Society, September 1935. Reprinted in The Undecidable, p. 237ff. Kleene's definition of "general recursion" (known now as mu-recursion) was used by Church in his 1935 paper An Unsolvable Problem of Elementary Number Theory that proved the "decision problem" to be "undecidable" (i.e., a negative result).
  • Kleene, Stephen C. (1943). "Recursive Predicates and Quantifiers". American Mathematical Society Transactions. 54 (1): 41–73. doi:10.2307/1990131. JSTOR 1990131. Reprinted in The Undecidable, p. 255ff. Kleene refined his definition of "general recursion" and proceeded in his chapter "12. Algorithmic theories" to posit "Thesis I" (p. 274); he would later repeat this thesis (in Kleene 1952:300) and name it "Church's Thesis"(Kleene 1952:317) (i.e., the Church thesis).
  • Kleene, Stephen C. (1952). Introduction to Metamathematics (First ed.). North-Holland Publishing Company. ISBN 0-7204-2103-9.  Excellent—accessible, readable—reference source for mathematical "foundations".
  • Knuth, Donald (1997). Fundamental Algorithms, Third Edition. Reading, Massachusetts: Addison–Wesley. ISBN 0-201-89683-4. 
  • Knuth, Donald (1969). Volume 2/Seminumerical Algorithms, The Art of Computer Programming First Edition. Reading, Massachusetts: Addison–Wesley. 
  • Kosovsky, N. K. Elements of Mathematical Logic and its Application to the theory of Subrecursive Algorithms, LSU Publ., Leningrad, 1981
  • Kowalski, Robert (1979). "Algorithm=Logic+Control". Communications of the ACM. 22 (7): 424–436. doi:10.1145/359131.359136.
  • A. A. Markov (1954) Theory of algorithms. [Translated by Jacques J. Schorr-Kon and PST staff] Imprint Moscow, Academy of Sciences of the USSR, 1954 [i.e., Jerusalem, Israel Program for Scientific Translations, 1961; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington] Description 444 p. 28 cm. Added t.p. in Russian Translation of Works of the Mathematical Institute, Academy of Sciences of the USSR, v. 42. Original title: Teoriya algerifmov. [QA248.M2943 Dartmouth College library. U.S. Dept. of Commerce, Office of Technical Services, number OTS 60-51085.]
  • Minsky, Marvin (1967). Computation: Finite and Infinite Machines (First ed.). Prentice-Hall, Englewood Cliffs, NJ. ISBN 0-13-165449-7.  Minsky expands his "...idea of an algorithm—an effective procedure..." in chapter 5.1 Computability, Effective Procedures and Algorithms. Infinite machines.
  • Post, Emil (1936). "Finite Combinatory Processes, Formulation I". The Journal of Symbolic Logic. 1 (3): 103–105. doi:10.2307/2269031. JSTOR 2269031. Reprinted in The Undecidable, p. 289ff. Post defines a simple algorithmic-like process of a man writing marks or erasing marks and going from box to box and eventually halting, as he follows a list of simple instructions. This is cited by Kleene as one source of his "Thesis I", the so-called Church–Turing thesis.
  • Rogers, Jr, Hartley (1987). Theory of Recursive Functions and Effective Computability. The MIT Press. ISBN 0-262-68052-1. 
  • Rosser, J.B. (1939). "An Informal Exposition of Proofs of Godel's Theorem and Church's Theorem". Journal of Symbolic Logic. 4. Reprinted in The Undecidable, p. 223ff. Herein is Rosser's famous definition of "effective method": "...a method each step of which is precisely predetermined and which is certain to produce the answer in a finite number of steps... a machine which will then solve any problem of the set with no human intervention beyond inserting the question and (later) reading the answer" (p. 225–226, The Undecidable)
  • Santos-Lang, Christopher (2014). "Moral Ecology Approaches to Machine Ethics". In van Rysewyk, Simon; Pontier, Matthijs (PDF). Machine Medical Ethics. Switzerland: Springer. pp. 111–127. doi:10.1007/978-3-319-08108-3_8. http://grinfree.com/MoralEcology.pdf.  Ginhipos 2015-02-08 han Wayback Machine
  • Scott, Michael L. (2009). Programming Language Pragmatics (3rd ed.). Morgan Kaufmann Publishers/Elsevier. ISBN 978-0-12-374514-9. https://archive.org/details/programminglangu0000scot_i7d2. 
  • Sipser, Michael (2006). Introduction to the Theory of Computation. PWS Publishing Company. ISBN 0-534-94728-X. 
  • Sober, Elliott; Wilson, David Sloan (1998). Unto Others: The Evolution and Psychology of Unselfish Behavior. Cambridge: Harvard University Press. https://archive.org/details/untoothersevolut00sobe. 
  • Stone, Harold S. (1972). Introduction to Computer Organization and Data Structures (1972 ed.). McGraw-Hill, New York. ISBN 0-07-061726-0.  Cf. in particular the first chapter titled: Algorithms, Turing Machines, and Programs. His succinct informal definition: "...any sequence of instructions that can be obeyed by a robot, is called an algorithm" (p. 4).
  • Tausworthe, Robert C (1977). Standardized Development of Computer Software Part 1 Methods. Englewood Cliffs NJ: Prentice-Hall, Inc.. ISBN 0-13-842195-1. https://archive.org/details/standardizeddeve0000taus. 
  • Turing, Alan M. (1936–37). "On Computable Numbers, With An Application to the Entscheidungsproblem". Proceedings of the London Mathematical Society, Series 2. 42: 230–265. doi:10.1112/plms/s2-42.1.230.. Corrections, ibid, vol. 43(1937) pp. 544–546. Reprinted in The Undecidable, p. 116ff. Turing's famous paper completed as a Master's dissertation while at King's College Cambridge UK.
  • Turing, Alan M. (1939). "Systems of Logic Based on Ordinals". Proceedings of the London Mathematical Society. 45: 161–228. doi:10.1112/plms/s2-45.1.161. Reprinted in The Undecidable, p. 155ff. Turing's paper that defined "the oracle" was his PhD thesis while at Princeton USA.
  • Wallach, Wendell; Allen, Colin (November 2008). Moral Machines: Teaching Robots Right from Wrong. USA: Oxford University Press. ISBN 978-0-19-537404-9. 
  • United States Patent and Trademark Office (2006), 2106.02 **>Mathematical Algorithms: 2100 Patentability, Manual of Patent Examining Procedure (MPEP). Latest revision August 2006

Mga segundarya nga reperensya

igliwat

Padugang nga barasahon

igliwat

Mga sumpay ha gawas

igliwat
Kitaa an Algoritmo ha
Wiktionary, an gawasnon nga pagpurulongan o diksyunaryu.
Mga repositoryo han Algorithmo
Lecture notes
Community